CHAPTER-2

INVERSE TRIGONOMETRIC FUNCTIONS

ASSERTION REASON QUESTIONS

The following questions consist of two statements – Assertions (A) and Reason(R). Answer these questions selecting the appropriate option given below:

- (a) Both A and R are true and R is the correct explanation for A
- (b) Both A and R are true and R is not the correct explanation for A
- (c) A is true but R is false
- (d) A is false but R is true

1.	Assertion(A): $\tan^{-1} x + \tan^{-1} \frac{1}{x} = \pi$.						
	Reason(R) : $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, $\forall x \in R$.						
2.	Assertion (A): $\sin^{-1}[\sin\frac{33\pi}{7}] = \frac{2\pi}{7}$.						
	Reason(R) : $\sin^{-1}[\sin x] = x$, $\forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.						
3.	Assertion (A): The domain of the function $\csc^{-1} x$ is $R - (-1, 1)$.						
	Reason(R) : The range of $\csc^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$.						
4.	Assertion (A): If $0 \le x \le \frac{\pi}{2}$, then $\sin^{-1}(\cos x) + \cos^{-1}(\sin x) = \pi - 2x$.						
	Reason(R) : $\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$, $\forall x \in [-1, 1]$.						
5.	Assertion(A): The value of $\tan(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}) = \frac{17}{6}$.						
	Reason(R) : $\tan^{-1}(\tan x) = \pi - x, \forall x \in R$.						
6.	.Assertion: $\sin^{-1}(\sin 2\pi/3) = \pi/3$						
	Reason: Sin ⁻¹ (sin θ) = θ when $\theta \in [-\pi/2, \pi/2]$						
7.	Assertion: $\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - \sqrt{1 - x^2}\sqrt{1 - y^2})$						
	If x, y >0 and $x^2 + y^2 \le 1$						
	Reason : Cos (cos $^{-1}$ x) = x when x ϵ [-1,1]						
8.	Assertion : $\tan^{-1} 2 + \tan^{-1} 3 = 3 \pi/4$						
	Reason: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$						

9.	Assertion: $\cot^{-1}(-x) = \pi - \cot^{-1}x$						
	Reason :The range of $\cot^{-1} x$ is (0, π						
10	0 Assertion: Equations 2 sin ⁻¹ x + 3 sin ⁻¹ y = 5 $\pi/2$ and y = kx – 5 hold simultaneously When k is						
	equal to 6.						
	Reason: Sin ⁻¹ x is continuous function in $x \in R$.						
11	11 Assertion : The equation $2(\sin^{-1}x)^2 - 5(\sin^{-1}x+2) = 0$						
	Reason : $\sin^{-1}(\sin x) = x$ if $x \in [-1.57, 1.57]$						
12	12 Assertion :The number of solutions of the						
	Equation $\sin^{-1}x + \sin^{-1}2x = \frac{\pi}{3}$ is only one.						
	Reason: The sum of two positive angles cannot be negative.						
13	Assertion (A): Principal value of $\cos^{-1}(1)$ is π						
	Reason (R): Value of cos 0 ⁰ is 1						
14	Assertion (A): Range of $\cot^{-1} x$ is (0, π)						
	Reason (R): Domain of tan ⁻¹ x is R.						
15	Assertion: Principle value of $\cos^{-1} 1 = 0^{\circ}$						
	Reason: $\cos 0^\circ = 1$.						
16	Assertion:tan 1 is less than tan ⁻¹ 1						
	Reason: Both the functions tan and tan ⁻¹ are increasing in first quadrant.						
17	Assertion:tan ⁻¹ (-1) = $-\frac{\pi}{4}$						
	Reason: $\tan^{-1}(-\theta) = -\tan\theta$ for $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$.						
18	Assertion: $\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{2}$						
	Reason: $\cos^{-1}(-x) = \pi - \cos^{-1} x$.						
19	Assertion (A): The domain of the function sec ⁻¹ x is the set of all real numbers.						
	Reason(R): For the function sec ⁻¹ x, x can take all real values except in the interval (-1, 1)						
20	Assertion (A): To define the inverse of the function $f(x) = \tan x$ any of the intervals (-3 $\pi/2$, -						
	π/2), (-π/2, π/2), (π/2, 3π/2) etc. can be chosen.						
	Reason(R): The branch having range $(-\pi/2, \pi/2)$ is called principal value branch of the function						
	$g(x) = \tan^{-1}x.$						

21	Assertion(A): sin ⁻¹ (sin 3) = 3						
	Reason(R): For principal values sin ⁻¹ (sin x) = x						
22	Assertion: The principal value of $\cos^{-1}\left(\cos\frac{5\pi}{3}\right)$ is $\frac{\pi}{3}$						
	Reason: The range of $\cos^{-1} x$ is $[0,\pi]$						
23	Assertion: The value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is $\frac{\pi}{3}$						
	Reason: The range of $\cos^{-1} x$ is $[0,\pi]$						
24	Assertion: The principal value of $\tan^{-1} \tan \frac{3\pi}{4}$ is $-\frac{\pi}{4}$						
	Reason: The of range $\tan^{-1}x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$						
25	Assertion: If $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$, then x is $\frac{\pi}{3}$						
	Reason: The of range $\tan^{-1}x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$						
26	Assertion: The principal value of $\cos^{-1}(\sec^{-1}\frac{5}{3})$ is $\frac{3}{5}$						
	Reason: The value of $\sec^{-1} x$ is $\cos^{-1} \frac{1}{x}$.						
27	Assertion (A): If $\cos^{-1} x - \sin^{-1} x = 0$, then $x = \frac{1}{\sqrt{2}}$						
	Reason (R) : $\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$						
28	Assertion (A): $\cot(\frac{\pi}{2} - 2\cot^{-1}3) = 7$						
	Reason (R) : $\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} = \frac{\pi}{2}$						
29	Assertion (A): $\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$						
	Reason (R) : For all x> 0,y> 0,xy< 1,tan ⁻¹ x+ tan ⁻¹ y=						
	$\tan^{-1}\frac{x+y}{1-xy}$						
30	Assertion (A): $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{77}{85}$						
	Reason (R) : $\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$						
	For $-1 \le x, y \le 1, x^2 + y^2 \le 1$.						
31	Assertion (A) : Domain of $\sin^{-1}(x)$ is (-1,1)						
	Reason(R): The value of $\sin^{-1}(1)$ is $\pi/2$						
32	Assertion (A): Range of $\sin^{-1}(x)$ is $[-\pi/2, \pi/2]$						
	Reason(R) : The principal value of $\sin^{-1}(1)$ is $\pi/2$						

33	Assertion (A): The principal value of $\cot^{-1} \frac{1}{\sqrt{3}} = \pi/6$							
	Reason(R):Range of principal value branch of $\cot^{-1} x$ is (0 , π)							
34	4 Assertion (A) : The principal value of $\tan^{-1} \frac{1}{\sqrt{3}} = \pi/6$							
	Reason(R) : Range of principal value branch of tan-1 x is (0 , π)							
35	Assertion (A) : Range of principal value branch of $\cot^{-1} x$ is (0, π)							
	Reason(R): Domain of $\sin^{-1}(x)$ is (-1,1).							
36	A: Trigonometric functions are not invertible.							
	R: Trigonometric functions are not one-one and onto in their domains.							
37	A: If $x \in [1, \sqrt{3}]$, then the range of $f(x) = \tan^{-1} x$ is $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$.							
	R: If $x \in [a, b]$, then the range of $f(x)$ is $[f(a), f(b)]$.							
38	A: The function $f(x) = x^2 + \tan^{-1} x$ is a non-periodic function.							
	R: The sum of two non-periodic functions is always non-periodic.							
39	A: Domain of the function $f(x) = \cot^{-1} x$ is \mathbb{R} .							
	R: $\cot x$ is defined for all $x \in \mathbb{R}$.							
40	A: Value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is $\frac{5\pi}{6}$.							
	R: Principal value branch of $\cos^{-1} x$ is $(0, \pi)$.							

ANSWER KEY

Q.NO	ANS	Q.NO	ANS
1	d	21	d
2	а	22	а
3	b	23	d
4	а	24	С
5	с	25	b
6	а	26	а
7	а	27	а
8	С	28	b
9	а	29	а
10	С	30	а
11	а	31	d
12	а	32	а
13	d	33	d
14	b	34	С
15	d	35	b
16	а	36	а
17	а	37	С
18	а	38	С
19	d	39	С
20	b	40	а

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : BHUBANESWAR REGION